PH4

	Question	Marking details	Marks Available
1	(a)	The total momentum (of a system) is constant (must have total, sum, vector sum etc.) (1) Provided no <u>external</u> [resultant] force (1) e.g The momentum before and after a collision is the same - 0 When two particles collide the sum of momentum stays the same as long as no forces are involved - 1 $A = \frac{c}{2}$ is a rearranged, or $E = hf - 2.13 \times 10^{-13} \text{ FH} (1)$	2
	(c)	$\lambda = \frac{c}{f} \text{ i.e. rearranged or } E = hf = 2.13 \times 10^{-13} \text{ [J] (1)}$ $p = \frac{h}{\lambda} \text{used} \text{or} p = \frac{E}{c} \text{quoted (1)}$ Final evidence $p = \frac{6.63 \times 10^{-34}}{9.35 \times 10^{-13}} \text{or} p = \frac{2.128 \times 10^{-13}}{3 \times 10^8} (= 7.09 \times 10^{-22}) \text{ (1)}$ Reasonable attempt at cons of mom	3
		e.g. initial p of Ni = final p of Ni $\pm p$ of photon (1) $2440 \times 9.95 \times 10^{-26} = 7 \times 10^{-22} - 9.95 \times 10^{-26} v$ (1) Answer = $4700 \text{ [m s}^{-1}\text{] or slightly different dependent on (b) (1)}$ Question 1 Total	3 [8]

	Question			Marking details	Marks Available
2	(a)			$\frac{1}{3}\rho \overline{c^2}V = nRT \text{i.e. some sort of combining both equations} (1)$	
				Realising $\rho = \frac{Nm}{V}$ (any mistakes in <i>N</i> and <i>m</i> means max of 1/3) (1) (or equivalent steps)	
				Clear algebra with no mistakes leading to $\frac{1}{2}m\overline{c^2} = \frac{3}{2}kT$ or $\frac{1}{2}m\overline{c^2} = \frac{3}{2}\frac{R}{N_A}T$ (if it's difficult to follow don't award the mark - needs to be clear) (1)	3
	(b)	(i)		Mass of argon molecule = $6.3(08) \times 10^{-26}$ (1)	
				Algebra or equivalent method $T = \frac{m\overline{c^2}}{3k}$ or $T = \frac{N_A m\overline{c^2}}{3R}$ (1) Answer = 605 [K] (1) ecf	3
		(ii)		$\sqrt{\overline{c^2}} \propto \sqrt{T}$ or correct substitution of 1 210 K (ecf) and algebra (1)	
				Answer = $630 \times \sqrt{2}$ or 891 [m s^{-1}] (1)	2
				Question 2 Total	[8]

	Que	stion	Marking details	Marks Available
3	(a)	(i)	Graph is straight line through origin [hence proportional] (1)	
			(accept acceleration is proportional to displacement)	2
			Negative gradient [hence direction ok] (1)	
		(ii)	Gradient calculated correctly i.e. $\frac{1}{0.028}$ or 36 (or k calculated from $ma = kx$ i.e. 7.14 N m^{-1}) (1)	
			Gradient = angular velocity squared i.e. method explained Or $f = \left(2\pi\sqrt{\frac{m}{k}}\right)^{-1}$ i.e. equation for T and $f = 1/T(1)$	
			Or $f = \left(2\pi\sqrt{\frac{1}{k}}\right)$ i.e. equation for T and $f = I/I(1)$ Answer $= \frac{5.98}{2\pi} = 0.95$ [Hz] (1)	3
		(iii)	2π 1 m s ⁻² read off graph	1
			Or $6^2 \times 0.028 = 1 \text{ [m s}^{-2} \text{]etc.}$	
		(iv)	Max speed = ωA or implied (= 0.167) (1)	
			$KE = \frac{1}{2}mv^2$ or implied (1)	
			Answer = 2.8 [mJ] (1) ecf	3
		(v)	$v = A\omega\cos\omega t$ used or $\varepsilon = 0$ stated (1)	
			Rearrangement e.g. $\omega t = \cos^{-1} \frac{v}{A\omega}$ or implied (1)	
			Correct answer = $0.156[s]$ (1) ecf	3
	(b)		KE to PE or PE to KE (1)	
			PE is both GPE and EPE (1)	
			Energy gradually lost due to friction or air resistance or internal energy of spring/air etc. Not sound, not heat by itself - needs more e.g. lost as heat to the air ok (1)	
			ok (1)	4
			Detail of energy loss e.g. internal energy of air, KE of air particles Question 3 total	[16]

.

Question			Marking details	Marks Available
4	(a)		$T = \frac{pV}{nR}$ seen or implied (1)	
			Evidence of 1 correct substitution (1)	
			Evidence of all 3 substituted correctly (1) A - $(0.500 \pm 0.002, 80000 \pm 2000)$ B - $(0.260 \pm 0.002, 235000 \pm 2000)$ C - $(0.260 \pm 0.002, 80000 \pm 2000)$	3
	(b)		$U = \frac{3}{2}nRT \text{ used } (1)$	
			Evidence of ΔT being used or differences in U being calculated (once) (1)	
			AB = 31 500 [J], BC = -60 500 [J], CA = 29 000 [J] (1)	3
	(c)	(i)	AB approximated as a trapezium (accept triangle gives 19 000 J) (1)	
			$AB = -38\ 000\ [J]\ (1)$	
			AB \approx (- 32 000 ± 3 000) J due to better method $\checkmark\checkmark\checkmark$ e.g. two trapezia or 2 triangles or square counting, or any attempt at integrating pV (unlikely) etc. (i.e. 2 marks for good method 1 mark for correct answer) (1)	3
		(ii)	BC = 0 (independent)	1
		(iii)	$CA = 19\ 200\ [J]$	1
	(d)	(i)	$Q = \Delta U + W$ i.e. equation used (1)	
			Correct answer with their figures e.g. $31500 - 38000 = -6500$ (also ecf possible for $31500 + 38000 = 69500$) (1)	2
		(ii)	No time for heat transfer	1
			Question 4 Total	[14]

© WJEC CBAC Ltd.

Question			Marking details	Marks Available
5	(a)	(i)	$g = \frac{GM}{r^2}$ used (1) Answer = 3.7 m s ⁻² or N kg ⁻¹ or equivalent (1) UNIT MARK	2
		(ii)	$V_g = -\frac{GM}{r}$ used (1) Answer = ± 9.02 [MJ kg ⁻¹] (1) ecf on km conversion	2
		(iii)	Negative amount of work bringing mass from ∞ (accept no work done bringing from ∞ or system will do work or work is done in the other direction etc.)	1
	(b)	(i)	$PE = V_g \times m$ or implied (1) $KE = \frac{1}{2}mv^2$ used (1) Answer = 656 kJ - 4.1 MJ = -3.44 [MJ] (1) $-\frac{GMm}{r} = -3.44$ MJ (1)	3
			r = 2905 km (1) Height = 465 [km] (1) ecf	3
			Question 5 Total	[11]

.

	Question	Marking details	Marks Available
6	(a)	Arrows pointing towards charges similar to shown ✓✓ -2.40 nC	2
		Arrows pointing away from charges similar to shown ✓	
	(b)	$E = \frac{Q}{4\pi\varepsilon_0 r^2} \text{used} (1)$	
		The 2 vertical components cancel or no field into or out of page (1)	
		Pythagoras or trig e.g. $\sqrt{5^2 - 4^2} = 3$ or recognising 3,4,5 triangle (equivalent is to realise $\cos \theta = 3/5$ or $\theta = 53^{\circ}$ etc.) (1)	
		2 nC charge field x2 and x3/5 ecf (for horizontal components) (1)	
		Calculations all ok e.g. $8640 = 7200 \times 2 \times 3/5$ or equivalent shown (1)	5
	(c)	$V = \frac{Q}{4\pi\varepsilon_0 r} \text{used} (1)$	
		Attempt at adding all 3 potentials (1)	
		$-360 - 360 - 432 = -1152 \text{ V or J C}^{-1}$ or equivalent (1) UNIT MARK	3
	(d)	Use of PE = $q\Delta V$ must be a change (1)	
		Rearrangement i.e. $v^2 = \frac{2 \times PE}{m}$ allow ecf on $V(1)$	
		Answer = $18.3 \times 10^6 \text{ [m s}^{-1}\text{] (ecf only if a } \Delta V \text{ used) (1)}$	3
		Question 6 Total	[13]

	Qı	uestion	Marking details	Marks Available
7	(a) (b) (c)	(i)&(ii)	Marking details $T = 2\pi \sqrt{\frac{(1.4 \times 10^{10})^3}{6.67 \times 10^{-11} \times (1.6 \times 10^{29} + 3.7 \times 10^{27})}} $ (1) Answer = 3.15 x 10 ⁶ [s] or implied (3.19 x 10 ⁶ s if M_2 omitted) (1) $36.5 \text{ [days] (1) (36.9 if } M_2 \text{ omitted gets 2/3)}$ $r_1 = \frac{M_2}{M_1 + M_2} d \text{used or } M_1 r_1 = M_2 r_2 \text{used (1)}$ Star orbit radius = 0.032 x 10 ¹⁰ [m] (1) Planet orbit radius = 1.37 x 10 ¹⁰ [m] (1) $v = \frac{2\pi r}{T} \text{or} v = \omega r \text{and} \omega = 2\pi f (1)$ $v = \frac{2\pi \times 0.032 \times 10^{10}}{3.15 \times 10^6} (= 631) (1) \text{ ecf}$ $\frac{\Delta \lambda}{\lambda} = \frac{v}{c} \text{values substituted or not possible (1)}$	
			Answer = 3.9 [pm] because mean radial speed unknown (1)	2
			Don't penalise using 2 x v if explained	
			Question 7 Total	[10]

GCE PHYSICS MS - JANUARY 2014

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994

E-mail: exams@wjec.co.uk website: exams@wjec.co.uk